Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 199(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872183

RESUMO

Streptococcus pneumoniae is an ovoid-shaped Gram-positive bacterium that grows by carrying out peripheral and septal peptidoglycan (PG) synthesis, analogous to model bacilli, such as Escherichia coli and Bacillus subtilis In the model bacilli, FtsZ and FtsA proteins assemble into a ring at midcell and are dedicated to septal PG synthesis but not peripheral PG synthesis; hence, inactivation of FtsZ or FtsA results in long filamentous cells unable to divide. Here, we demonstrate that FtsA and FtsZ colocalize at midcell in S. pneumoniae and that partial depletion of FtsA perturbs septum synthesis, resulting in elongated cells with multiple FtsZ rings that fail to complete septation. Unexpectedly, complete depletion of FtsA resulted in the delocalization of FtsZ rings and ultimately cell ballooning and lysis. In contrast, depletion or deletion of gpsB and sepF, which in B. subtilis are synthetically lethal with ftsA, resulted in enlarged and elongated cells with multiple FtsZ rings, with deletion of sepF mimicking partial depletion of FtsA. Notably, cell ballooning was not observed, consistent with later recruitment of these proteins to midcell after Z-ring assembly. The overproduction of FtsA stimulates septation and suppresses the cell division defects caused by the deletion of sepF and gpsB under some conditions, supporting the notion that FtsA shares overlapping functions with GpsB and SepF at later steps in the division process. Our results indicate that, in S. pneumoniae, both GpsB and SepF are involved in septal PG synthesis, whereas FtsA and FtsZ coordinate both peripheral and septal PG synthesis and are codependent for localization at midcell.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is a clinically important human pathogen for which more therapies against unexploited essential targets, like cell growth and division proteins, are needed. Pneumococcus is an ovoid-shaped Gram-positive bacterium with cell growth and division properties that have important distinctions from those of rod-shaped bacteria. Gaining insights into these processes can thus provide valuable information to develop novel antimicrobials. Whereas rods use distinctly localized protein machines at different cellular locations to synthesize peripheral and septal peptidoglycans, we present evidence that S. pneumoniae organizes these two machines at a single location in the middle of dividing cells. Here, we focus on the properties of the actin-like protein FtsA as an essential orchestrator of peripheral and septal growth in this bacterium.

2.
J Biol Chem ; 290(41): 25081-9, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26330552

RESUMO

The cell division protein FtsZ assembles in vitro by a mechanism of cooperative association dependent on GTP, monovalent cations, and Mg(2+). We have analyzed the GTPase activity and assembly dynamics of Streptococcus pneumoniae FtsZ (SpnFtsZ). SpnFtsZ assembled in an apparently cooperative process, with a higher critical concentration than values reported for other FtsZ proteins. It sedimented in the presence of GTP as a high molecular mass polymer with a well defined size and tended to form double-stranded filaments in electron microscope preparations. GTPase activity depended on K(+) and Mg(2+) and was inhibited by Na(+). GTP hydrolysis exhibited a delay that included a lag phase followed by a GTP hydrolysis activation step, until reaction reached the GTPase rate. The lag phase was not found in polymer assembly, suggesting a transition from an initial non-GTP-hydrolyzing polymer that switches to a GTP-hydrolyzing polymer, supporting models that explain FtsZ polymer cooperativity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Streptococcus pneumoniae , Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Guanosina Difosfato/metabolismo , Cinética , Multimerização Proteica , Estrutura Quaternária de Proteína
3.
mBio ; 5(6): e02221, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25425238

RESUMO

UNLABELLED: Together with ATP, the C-terminal region of the essential streptococcal FtsA protein acts as an intramolecular switch to promote its polymerization and attachment to the membrane. During septation, FtsA is known to anchor the constricting FtsZ ring and, subsequently, the divisome to the membrane. Truncation of the C terminus of the streptococcal FtsA (FtsAΔCt) facilitates a more rapid ATP-dependent polymerization in solution than is seen with the full-length protein (FtsA(+)). The FtsAΔCt polymers are more organized and compact than those formed in solution by FtsA(+), resembling the shape of the membrane-associated FtsA(+) polymers. We find that ATP, besides being needed for polymerization, is required for the attachment of FtsA(+) to lipid monolayers and to vesicle membranes. We propose a model in which the binding of ATP activates a switch favoring the polymerization of FtsA and at the same time driving the amphipathic helix at its C terminus to become attached to the membrane. Conversely, when FtsA is in the cytoplasm, the C terminus is not engaged in the attachment to the membrane, and it obstructs polymerization. ATP-dependent polymerization of FtsA inside membrane vesicles causes vesicle shrinkage, suggesting that, besides providing a membrane attachment for FtsZ, the FtsA C terminus may also introduce local alterations in the membrane to facilitate septation. IMPORTANCE: FtsA is a protein needed in many bacteria to construct a septum that divides one fully grown cell, producing two daughters. We show that the region located at the C-terminal end of the Streptococcus pneumoniae FtsA protein works as a switch triggered by ATP, a molecule that stores energy. This region contains an amphipathic helix that obstructs the assembly of FtsA into polymers in the cytoplasm. In the presence of ATP, the obstruction is removed by switching the position of the helix. The switch directs the helix to the membrane and simultaneously facilitates the polymerization of the protein. The accumulation of FtsA molecules at the membrane causes distortions, an effect produced also by proteins such as MinD, MreB, and SepF that also contain amphipathic helixes as membrane attachment devices. In the case of FtsA, these distortions may also facilitate the initial events that lead to the division of bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Streptococcus pneumoniae/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ligação Proteica , Deleção de Sequência , Streptococcus pneumoniae/genética , Lipossomas Unilamelares/metabolismo
4.
J Biol Chem ; 288(29): 20830-20836, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23740256

RESUMO

Cell division in Escherichia coli begins by assembling three proteins, FtsZ, FtsA, and ZipA, to form a proto-ring at midcell. These proteins nucleate an assembly of at least 35 components, the divisome. The structuring of FtsZ to form a ring and the processes that effect constriction have been explained by alternative but not mutually exclusive mechanisms. We discuss how FtsA and ZipA provide anchoring of the cytoplasmic FtsZ to the membrane and how a temporal sequence of alternative protein interactions may operate in the maturation and stability of the proto-ring. How the force needed for constriction is generated and how the proto-ring proteins relate to peptidoglycan synthesis remain as the main challenges for future research.


Assuntos
Divisão Celular , Escherichia coli/citologia , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos
5.
J Biol Chem ; 287(10): 7756-65, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22247552

RESUMO

The effect of two different truncations involving either the 1C domain or the simultaneous absence of the S12-13 ß-strands of the FtsA protein from Streptococcus pneumoniae, located at opposite terminal sides in the molecular structure, suggests that they are essential for ATP-dependent polymerization. These two truncated proteins are not able to polymerize themselves but can be incorporated to some extent into the FtsA(+) polymers during the assembling process. Consequently, they block the growth of the FtsA(+) polymers and slow down the polymerization rate. The combined action of the two truncated proteins produces an additive effect on the inhibition of FtsA(+) polymerization, indicating that each truncation affects a different interaction site within the FtsA molecule.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Multimerização Proteica/fisiologia , Streptococcus pneumoniae/metabolismo , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Estrutura Terciária de Proteína , Streptococcus pneumoniae/química
6.
Mol Microbiol ; 76(3): 760-71, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20345660

RESUMO

Deprivation of FtsN, the last protein in the hierarchy of divisome assembly, causes the disassembly of other elements from the division ring, even extending to already assembled proto-ring proteins. Therefore the stability and function of the divisome to produce rings active in septation is not guaranteed until FtsN is recruited. Disassembly follows an inverse sequential pathway relative to assembly. In the absence of FtsN, the frequencies of FtsN and FtsQ rings are affected similarly. Among the proto-ring components, ZipA are more sensitive than FtsZ or FtsA rings. In contrast, removal of FtsZ leads to an almost simultaneous disappearance of the other elements from rings. Although restoration of FtsN allows for a quick reincorporation of ZipA into proto-rings, the de novo joint assembly of the three components when FtsZ levels are restored to FtsZ-deprived filaments is even faster. This suggests that the recruitment of ZipA into FtsZ-FtsA incomplete proto-rings may require first a period for the reversal of these partial assemblies.


Assuntos
Divisão Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética
7.
J Mol Biol ; 390(1): 17-25, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19447111

RESUMO

Bacterial cell division occurs through the formation of a protein ring (division ring) at the site of division, with FtsZ being its main component in most bacteria. FtsZ is the prokaryotic ortholog of eukaryotic tubulin; it shares GTPase activity properties and the ability to polymerize in vitro. To study the mechanism of action of FtsZ, we used molecular dynamics simulations of the behavior of the FtsZ dimer in the presence of GTP-Mg(2+) and monovalent cations. The presence of a K(+) ion at the GTP binding site allows the positioning of one water molecule that interacts with catalytic residues Asp235 and Asp238, which are also involved in the coordination sphere of K(+). This arrangement might favor dimer stability and GTP hydrolysis. Contrary to this, Na(+) destabilizes the dimer and does not allow the positioning of the catalytic water molecule. Protonation of the GTP gamma-phosphate, simulating low pH, excludes both monovalent cations and the catalytic water molecule from the GTP binding site and stabilizes the dimer. These molecular dynamics predictions were contrasted experimentally by analyzing the GTPase and polymerization activities of purified Methanococcus jannaschii and Escherichia coli FtsZ proteins in vitro.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/química , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Mathanococcus/química , Potássio/metabolismo , Sódio/metabolismo , Dimerização , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
8.
Mol Microbiol ; 61(1): 5-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16824090

RESUMO

Topological cues appear to override temporal events in the assembly of the Escherichia coli cell division ring. When a procedure that allows the recruitment of ring components based on their topological properties is used, a concerted mode of assembly of several components of the divisome, rather than a strict linear mode, is revealed. Three multimolecular complexes, the proto-ring, the periplasmic connector and the peptidoglycan factory, show some degree of concertation for their assembly. In addition, back-recruitment of all late proteins except FtsN into the division ring occurs even in the absence of proteins incorporated at earlier stages, i.e. FtsA or FtsQ.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Escherichia coli/citologia , Escherichia coli/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Peptidoglicano/metabolismo
10.
Mol Microbiol ; 55(3): 699-711, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15660997

RESUMO

We studied the cytological and biochemical properties of the FtsA protein of Streptococcus pneumoniae. FtsA is a widespread bacterial cell division protein that belongs to the actin superfamily. In Escherichia coli and Bacillus subtilis, FtsA localizes to the septal ring after FtsZ, but its exact role in septation is not known. In S. pneumoniae, we found that, during exponential growth, the protein localizes to the nascent septa, at the equatorial zones of the dividing cells, where an average of 2200 FtsA molecules per cell are present. Likewise, FtsZ was found to localize with the same pattern and to be present at an average of 3000 molecules per cell. Consistent with the colocalization, FtsA was found to interact with FtsZ and with itself. Purified FtsA is able to bind several nucleotides, the affinity being highest for adenosine triphosphate (ATP), and lower for other triphosphates and diphosphates. The protein polymerizes in vitro, in a nucleotide-dependent manner, forming long corkscrew-like helixes, composed of 2 + 2 paired protofilaments. No nucleotide hydrolytic activity was detected. Consistent with the absence of an ATPase activity, the polymers are highly stable and not dynamic. These results suggest that the FtsA protein could also polymerize in vivo and the polymers participate in septation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Biopolímeros/metabolismo , Divisão Celular/fisiologia , Streptococcus pneumoniae/citologia , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Deleção de Genes , Genes Essenciais , Magnésio/metabolismo , Mutagênese Insercional , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Frações Subcelulares/metabolismo , Técnicas do Sistema de Duplo-Híbrido
11.
Mol Microbiol ; 53(5): 1359-71, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15387815

RESUMO

The FtsA protein is a member of the actin superfamily that localizes to the bacterial septal ring during cell division. Deletions of domain 1C or the S12 and S13 beta-strands in domain 2B of the Escherichia coli FtsA, previously postulated to be involved in dimerization, result in partially active proteins that do not allow the normal progression of septation. The truncated FtsA protein lacking domain 1C (FtsADelta1C) localizes in correctly placed division rings, together with FtsZ and ZipA, but does not interact with other FtsA molecules in the yeast two-hybrid assay, and fails to recruit FtsQ and FtsN into the division ring. The rings containing FtsADelta1C are therefore incomplete and do not support division. The production of high levels of FtsADelta1C causes filamentation, an effect that has been reported to result as well from the imbalance between FtsA+ and FtsZ+ molecules. These data indicate that the domain 1C of FtsA participates in the interaction of the protein with other FtsA molecules and with the other proteins that are incorporated at later stages of ring assembly, and is not involved in the interaction with FtsZ and the localization of FtsA to the septal ring. The deletion of the S12-S13 strands of domain 2B generates a protein (FtsADeltaS12-13) that retains the ability to interact with FtsA+. When the mutated protein is expressed at wild-type levels, it localizes into division rings and recruits FtsQ and FtsN, but it fails to sustain septation at normal levels resulting in filamentation. A fivefold overexpression of FtsADeltaS12-13 produces short cells that have normal division rings, but also cells with polar localization of the mutated protein, and cells with rings at abnormal positions that result in the production of a fraction (15%) of small nucleoid-free cells. The S12-S13 strands of domain 2B are not essential for septation, but affect the localization of the division ring.


Assuntos
Divisão Celular/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Forma Celular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...